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Abstract. This is the second of the two last papers by V.N. Gribov concluding his 20 year long study
of the problem of quark confinement in QCD. In this paper the analytic structure of quark and gluon
Green functions is investigated in the framework of the theory of confinement based on the phenomenon
of supercritical binding of light quarks. The problem of unitarity in a confining theory is discussed. The
write-up remained unfinished and as such it is presented here. The author was planning to emphasise the
link between the electroweak and strong interactions, and in particular the rôle of pions (Goldstone bosons)
in confinement, to present an explicit solution for bound states, and to write down an analytic model for
quark and gluon Green functions corresponding to confinement.

1 Introduction 1

Almost ten years ago [1] I proposed a hypothesis according
to which quarks and gluons are confined due to the exis-
tence of light quarks (u and d) with Compton wavelengths
much larger than the radius of strong interaction defined
by λQCD. The essence of this hypothesis is the supercriti-
cal phenomenon which is well known in QED. I.e., if there
exists a heavy nucleus of radius R with charge Z exceed-
ing a critical value Zcr (which is of the order of 137), the
vacuum of the light charged fermions (electrons) becomes
unstable due to the process of (e−, e+) pair creation. The
negative component of the pair, the electron, falls into the
heavy charge and the positive component goes to infinity.
The condition for this phenomenon to occur is that the
Compton wavelength 1/m of the electron has to be much
larger than the radius of the heavy charge:

α
√
Z2 − Z2

cr ln(mR) > π. (1.1)

The electron which falls into the centre forms, together
with the source Z, an ion of charge Z1 = Z−1. If Z−1 >
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Fig. 1.

Zcr, this process will continue until the vacuum becomes
stable, i.e., when Zn = Z−n becomes less than the critical
charge.

From the point of view of the Dirac equation, the
falling electron has a negative energy. On the other hand,
the supercritical ion with Zn < Zcr is stable because of the
Pauli principle. Indeed, the electron cannot leave the ion,
since all negative energy states outside it are occupied.

In QCD this phenomenon can occur since, due to
asymptotic freedom, the colour charge can reach the crit-
ical value for any object. Let us suppose that two heavy
quarks are created with opposite colours. The gluonic vac-
uum polarisation increases the colour charges of the
quarks (see Fig. 1). When these colour charges become
large enough, light antiquarks start to fall onto the heavy
quark. However, the bound state formed by a light anti-
quark and a heavy quark will be very different from the
bound states which appeared in QED. In QED we had
an ion with a charge Z − 1. In QCD the corresponding
state can be colourless. The difference is due to the fact
that, while the large colour charge of the heavy quark re-
sults from gluonic vacuum polarisation, the bound state
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is formed by two particles of which the total charge equals
zero, and this charge cannot be changed by vacuum polar-
isation. This phenomenon can be called quantum screen-
ing. Formally it means that the heavy quark qh is unstable
and has to decay into a meson and a light quark ql:

qh → M + ql. (1.2)

This case – the confinement of the heavy quark – is rela-
tively simple and almost independent of the properties of
the light quark [2]. The problem of the light quark is more
difficult. At first sight it is not clear whether the “falling
into the centre” and the formation of a supercritical state
can occur in the system of a light quark and a light an-
tiquark. It was shown [3], however, that the critical phe-
nomenon indeed exists in the light qq̄ system. Moreover,
the critical coupling constant is proven to be sufficiently
small:

αcr

π
=

(
1 −

√
2
3

)
3
4

' 0.14. (1.3)

There is an even more complicated question: what kind of
states can be formed as a result of this phenomenon? If
the new state that appears is a normal meson, the “falling
into the centre” leads to

ql → M + ql (1.4)

instead of (1.2). Equation (1.4) can be satisfied if there
are not only positive energy quarks q+ but also negative
energy quarks q−. Although it looks very strange, this
result is not unexpected. Indeed, we already learned in
QED that particles which fall into the centre correspond
to the negative energy solution of the Dirac equation.

To resolve the problem of the negative energy states,
Dirac supposed that they are all occupied and therefore
not observable. The necessity to now consider both the
positive and the negative solutions of the Dirac equation
only means that Dirac’s hypothesis is not always true. If
the interaction is strong enough, there is another possibil-
ity: negative energy states might be only partly occupied
and positive energy states only partly empty. This is, how-
ever, not in contradiction with the absence of negative
energy particles in the real world if stable supercritical
bound states (mesons) exist, since in this case both the
positive and negative energy quarks will be unstable:

q+ → M + q−,

q− → M + q−q−q̄− (1.5)

and, consequently, unobservable.
From the point of view of the fermionic spectrum in

the vacuum, (1.5) means the following. In the case of weak
interactions, the fermionic spectrum has a structure cor-
responding to Fig. 2. All levels above q0 = (~q2 + m2)1/2

are empty, and the levels below q0 = −(~q2+m2)1/2 are oc-
cupied. If the interaction is stronger than critical, quark–
antiquark pairs are present in the vacuum, and the spec-
trum has a structure which roughly corresponds to Fig. 3:

|~q |

q0 = −√~q 2 +m2

q0 q0 =
√
~q 2 +m2

Fig. 2.

|~q |

q0 = −
√
~q 2 +m2

f

q0

type 1 type 2

q0 =
√
~q 2 +m2

f

Fig. 3.

all levels are occupied in the shaded regions and empty in
the unshaded ones. In terms of condensed matter physics,
the curves q0 = ±(~q2 + m2

f )
1/2 correspond to the Fermi

surface. The change in the number of constituents in the
theory is also natural from the point of view of the physics
of condensed matter. In a theory with weak coupling we
had two constituents: q and q̄; a theory with supercritical
coupling contains four states: q+, q−, q̄+ and q̄−. In non-
relativistic physics there are only particles (electrons) and
no antiparticles. However, in a conductor we have particles
and holes, and holes are negative energy states (counting
the energy of the holes from zero and not from the Fermi
energy as it is usually done).

In a relativistic theory it is impossible to add a con-
stant to the energy of particles, and therefore we are forced
to talk about negative energy states which exist only in-
side our matter (vacuum).

This unusual quark spectrum has been discussed for
several years. However, I have not been able to formulate
a constructive theory because I have not understood what
meson had to be introduced as a supercritical bound state.
From the structure of the spectrum shown in Fig. 3 it is
clear that there have to be different types of excitations
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corresponding to different types of mesons. It is natural
to identify hole–particle excitations of the first type near
the Fermi surface with mesons like ρ, ω etc. Hole–particle
excitations near the light cone can be identified with the
a0 and f0 mesons [4] and also with η′. However, all these
mesons do not look like natural candidates for the lowest
supercritical bound states. Only recently did I recognise
that there are strong reasons to believe that the pseu-
doscalar octet, and the π meson in particular, are in fact
the lowest supercritical bound states. Most of these rea-
sons are connected with the discussion of the nature of the
π meson state which I presented in [5].

As I have said before, the supercritical atom in QED
is not a usual Bohr-type atom, containing a definite num-
ber of electrons. Rather, it is a collective state in which
only the electron density is localised around the heavy
charge, and only at large distances (much larger than the
atomic radius) it looks like a state with a definite electron
number. A quasi-Goldstone state like a π meson with a
finite mass has the same properties. At short distances
(distances smaller than λQCD) it can be considered as a
collective state of the type qlq̄l–qrq̄r (divergence of the
pseudovector current; ql and qr stand for left-handed and
right-handed quarks, respectively), whereas at large dis-
tances it is the two-particle state qlq̄r–qrq̄l. Accepting this
identification with the π meson as the lowest supercritical
state by introducing it explicitly in the equation for the
quark Green function (which will be discussed in the next
section of this paper), it is possible to find a solution for
this Green function which has properties corresponding
to the spectrum in Fig. 3. This solution has two complex
poles as functions of energy in the complex energy plane
in accordance with the two types of quarks (constituent
and current) we have discussed. It has no pole on the real
axis, which guarantees that quarks as propagating states
do not exist. It has a soft singularity when q2 → 0, re-
flecting the fact that quark currents exist in the region
where the hadrons are created. It is important to stress
that in all these considerations I assume that the coupling
constant α is saturated at a value not much larger than
αcr. Quark masses corresponding to the positions of the
two complex poles m± are of the order of

m± ∼ λQCD exp
(

− C±√
α− αcr

)
.

The solution for the Green function is self-consistent if
the π meson mass is close to m−. This means that, at
least in the case when α is not very large, the π meson
mass is defined by strong interaction dynamics. This result
contradicts the usual point of view according to which the
π meson mass squared is the product of the bare quark
mass m0 defined by weak interactions and the condensate
density 〈Ψ̄Ψ〉/f2

π defined by strong interactions.
In what follows I will explain what type of equations

have to be written down and solved in order to come to the
conclusion I have stated and to calculate quantities which
have not been analysed until now. For example, quark–
gluon vertices and the gluon Green function have not been
calculated yet. It is clear, however, that the gluon Green

α

−q2λ2

Fig. 4.

function we obtain will also have a complex singularity
due to the gluon decay into a qq̄ pair. Consequently, the
gluon will also be confined. Equations for hadronic ampli-
tudes can also be written constructively if α is not very
large. It can be shown that, if the quark Green function
has properties as described above, the hadronic amplitude
will have no singularities connected with intermediate qq̄
states, but will have singularities related to the π meson
thresholds. The fact that the π meson is included intrin-
sically in the equation for the quark Green function and
has a mass of the order of m− makes this statement much
less mysterious than it would look without it.

2 The structure of the confined solution
for the Green function of massless quarks

In [6] we considered the solution for the quark Green func-
tion corresponding to chiral symmetry breaking. We dis-
cussed the importance of including the contribution of the
Goldstone boson in the equation. In the present paper we
show that this solution does not necessarily survive in the
presence of the Goldstone contribution which essentially
reflects the softness of the condensate and leads to the
existence of a solution which has no poles and which cor-
responds to confined quarks.

We will write the equation for the quark Green func-
tion as follows:

∂2G−1(q) = g(q)∂µG
−1(q)G(q)∂µG

−1(q) (2.1)

− 3
16π2f2

π

{iγ5, G
−1(q)}G{iγ5, G

−1(q)},

where g(q) = (4/3)(α/π) is supposed to behave as in [6]
(see Fig. 4) and fπ is the amplitude for the pion–axial
current transition, which satisfies the equation

f2
π =

1
8

∫
d4q

(2π)4i
Tr{iγ5, G

−1}G{iγ5, G
−1}GAµAµ

+
1

64π2f2
π

∫
d4q

(2π)4i
Tr
({γ5, G

−1}G)4. (2.2)

Before turning to the formal solution, let us discuss its gen-
eral properties and the difference in the structure caused
by the inclusion of the pion contribution.

By writing G−1(q) as

G−1(q) = Z−1(q)
(
m(q) − q̂

)
, (2.3)
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Fig. 5.

we obtain (2.1) in the form

∂2G−1 = g(q)∂µG
−1G∂µG

−1 +
m2

f2

m− q̂

m2 − q2
Z−1, (2.4)

where f2 = (4/3)π2f2
π . For the solution of the equation

for G−1 without a pion contribution (i.e. without the last
term in (2.4)) the behaviour of Z(q2) and m(q2) as func-
tions of q2 in the Euclidean region of negative q2 = −Q2

is shown in Fig. 5. Here the dashed curve corresponds to
the massive quark, m0 6= 0, and the solid curve to the
massless quark, respectively. In the latter case

m(q2) = − ν3

Q2 , Q2 → ∞. (2.5)

If we include the last term of (2.4), the solution corre-
sponding to massive quarks disappears, as was expected.
The massless quark solution (2.5) will, however, survive
because in this case the last term in (2.4) which can be
called ∆π is small at large Q2 values:

∆π = − ν6q̂

f2Q6Z
−1, Q2 → ∞. (2.6)

Let us turn to the effect of the pion contribution at small
Q2. For Q � mc = m(0), (2.4) leads to the following two
equations:

∂2(Z−1m) =
(

4g
m2

c
+

1
f2

)
Z−1m, (2.7)

∂2Z−1 +
2
q2
qµ∂µZ

−1 =
(

2g
m2

c
+

1
f2

)
Z−1. (2.8)

We see that the pion produces a hundred percent correc-
tion to the effective coupling, because f ∼ mc and g ' 0.2
if we are close to the critical value of g. This change can
be crucial. We will analyse (2.6) more carefully later. For
the time being, in order to see what can happen, let us
take (2.7) and (2.8) literally. These simple equations are
easy to solve. The solutions are

Z−1m =
µ2

1

Q
Z1(Q/µ1),

4g
m2

c
+

1
f2 =

1
µ2

1
; (2.9)

Z−1 =
µ2

2

Q2Z2(Q/µ2),
2g
m2

c
+

1
f2 =

1
µ2

2
, (2.10)

Q2

m1

λ2Q2
2 Q2

1

Z−1(q2)

m(q2)

Fig. 6.

where Z1 and Z2 are solutions Zν of the Bessel equation
with index ν = 1, 2, respectively. The concrete forms of
Z1 and Z2 depend on the boundary conditions imposed
on the solutions. If we want to preserve the behaviour of
Z−1 and m at small Q2 values, we have to choose

Z1 ∝ J1(Q/µ1), Z2 ∝ J2(Q/µ2), (2.11)

where J1 and J2 are Bessel functions. In this case, how-
ever, the behaviour of Z−1 and m will change at large Q2

values, and it is not obvious whether it will be possible to
preserve the asymptotic behaviour (Fig. 5) corresponding
to asymptotic freedom. If our aim is to keep the behaviour
at large Q2 unchanged, we have to choose Z1 and Z2 as
superpositions of the singular and non-singular solutions
of the Bessel equation:

Z1 = a1Y1(Q/µ1) + b1J1(Q/µ1), (2.12a)
Z2 = a2Y2(Q/µ2) + b2J2(Q/µ2), (2.12b)

and we have to select a1,2 and b1,2 in such a way that the
asymptotic behaviour at large Q2 is preserved. For small
Q2 values this means

Z1 ∝ 1
Q
, Z2 ∝ 1

Q2 (2.13)

and, consequently,

Z−1 ∝ 1
Q4 , m ∝ Q2. (2.14)

Instead of the behaviour of Z−1 and m corresponding
to Fig. 5, we now have a behaviour as shown in Fig. 6.
This behaviour corresponds to the confined solution for
the quark Green function. In this solution the condensate
which is created at momenta of the order of λ exists only
in a region of Q2 values between Q2

1 and Q2
2 (Q2

1, Q
2
2 ∼ f2)

and disappears at smaller Q2 values due to its decay into
π mesons. Because of the decrease of m(q2) at large and
small Q2, in this solution the pion contribution to the
right-hand side of (2.4), ∆π, is localised between Q2

1 and
Q2

2 (we will look at this in detail later). This localisation
of the pion contribution enables us to analyse not only
the behaviour in the Euclidean region q2 < 0 but also the
analytic properties of the solution and its behaviour at
positive q2 values.



V.N. Gribov: The theory of quark confinement 95

If the pion is localised, G−1(q) satisfies the old equa-
tion without ∆π at Q2 � Q2

1 and Q2 � Q2
2. This means

that G−1(q) can be written in the form

G−1(q) = C1(q)G−1
1 (q) + C2(q)G−1

2 (q), (2.15)

where G−1
1,2(q) are two different solutions of (2.4) for ∆π =

0, and C1,2(q) are slowly varying functions:

C1(q) → const. at Q2 � Q2
1 and

C1(q) → 0 at Q2 � Q2
2,

C2(q) → 0 at Q2 � Q2
1 and

C2(q) → const. at Q2 � Q2
2.

G−1(q) has to satisfy the conditions at large Q2 which we
already imposed on our solution. For this, we are bound
to choose G−1

1 (q) to be the solution corresponding to sym-
metry breaking with the “mass” mc, which was discussed
in [6], and G−1

2 (q) has to be the solution describing a sin-
gular behaviour of the type (2.13), (2.14) at small Q2. We
must also keep in mind that G−1(q) (2.15) must have no
singularities in the complex plane. G−1

1 (q) has no singu-
larities there, but the standard cut on the real axis from
q2 = m2

1 to q2 → ∞. We choose G−1
2 to also have no

singularities in the complex plane. After that we shall see
what will be the singularities of G−1(q).

Making use of the fact that (2.4) with ∆π = 0 is scale
invariant for α = const., we can always write2

G−1
2 (q̂, g (q)) =

m2
2

q2
G̃−1

(
m2

2

q̂
, g

(
m2

2

q

))
, (2.16)

where G̃−1(q) satisfies the equation

∂2G̃−1(q) = g

(
m2

2

q

)
∂µG̃

−1(q)G̃(q)∂µG̃
−1(q). (2.17)

This is the same equation which we have discussed in [6];
the behaviour of g̃(q) ≡ g(m2

2/q) is g̃ → 0 at q → 0 and
g̃(q) → g0 at q → ∞, which is opposite to what is shown
in Fig. 4. It was shown in [3, 6] that, independent of the
behaviour of g, we can always find a solution with a cut
along the positive q2 axis from q2 = m2

2 to q2 → ∞ if we
choose that the solution has no singularities at q = 0 and
if we fix G̃−1(q) by the condition G̃−1(q)|q=0 = m′

2 (m2
and m′

2 are related to each other in a simple way).
Suppose that G̃−1(q) is chosen in such a way. Then

G−1
2 (q) defined by (2.16) will have a cut from q2 = 0 to

q2 = m2
2 and a singular behaviour at q2 → 0. As a result,

G−1(q) has two cuts in the q2 plane (Fig. 7), where we take
m2 > m1 since, as we will see in the next section, this is
the only possibility to avoid singularities in the complex
plane; due to reasons to be discussed, iε is positioned in
the way shown in Fig. 7.

2 This expression is valid in the small-g approximation. To
satisfy (2.4) in an identical way without the pion contribution,
for constant g, the q-exponent in the prefactor in (2.16) should
be chosen to be 2/(1 − g).

m2
1 − iε

q2

m2
2 + iε

Fig. 7.

m1

q0

−m1
G−1

+ (q0)

Fig. 8.

For the sake of simplicity, let us consider the properties
of G−1(q) in the q0-plane at the value ~q = 0 of the space
component of q. We will write G−1(q), as in [6], in the
form

G−1(q0) = G−1
+ (q0)

1 + γ0

2
+G−1

− (q0)
1 − γ0

2
. (2.18)

For example, G−1
+ (q0) has two normal cuts (Fig. 8). The

singularities of G−1
1+(q0) at q0 = m1 and q0 = −m1 are

different. It is clear from (103) in [6] that G−1
1+(q0 = m1) =

0, while G−1
1−(q0 = m1), for g < 1/2, is different from zero:

G−1
1−(q0 = m1) = G−1

1+(q0 = −m1) = const.
The function G̃−1

+ (q0) also has the analytic structure
of Fig. 8 with m1 → m2. In the course of the reflection
q0 → −m2

2/q
′
0 the points on the line q0 = iQ transform

into q′
0 = im2

2/Q and the points q0 = ±m2 ∓ iε transform
into q′

0 = ∓m2 ∓ iε. As follows from all this, G−1
+ has

singularities corresponding to Fig. 9.
These analytic properties are a clear manifestation of

the fact that the Dirac sea is destroyed; G−1
+ has singular-

ities corresponding to both positive and negative energies.
The parameter m2 has the meaning of the Fermi energy.
In order to find zeros of G−1

+ , which have to be in the lower
q0 half plane and correspond to unstable quarks with pos-
itive and negative energy, we have to know the signs of
ImG−1

1+, ImG−1
2+ and the signs of C1, C2 in (2.15). The

solutions G−1
1+(q0) and G̃−1

+ (q0) satisfy the normal unitar-
ity condition. Their imaginary parts at positive q0 have to
be negative. This leads to signs of the imaginary parts as
shown in Fig. 9 (with arrows pointing at the positive side
of the cuts). Having this in mind, we can write G−1

1 (q̂)
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+ +

m1

q0

−m1

−m2

G−1
+ (q0)

−iε

iε
m2

Fig. 9.

near to its zero (i.e. at q0 close to m1) in the form

G−1
1+ = (m1 − iδ − q0)1/β ,

1
2
< β < 1. (2.19)

Since G−1
2+ remains finite at q0 → m1, it can be given in

the form

G−1
2+(q0) = ρe−iφ, 0 < φ < π. (2.20)

If so,

G−1
+ (q0) = C1(m1 − iδ − q0)1/β + C2ρe−iφ. (2.21)

The zeros of G−1
+ (q0) are then defined by the equation

q∗
0 = m1 − iδ +

(
ρC2

C1

)β

e−i[βφ+(1−β)π]. (2.22)

If C2/C1 > 0, we have Im q∗
0 < 0. In this case the singular-

ity appears in the lower half plane and describes the un-
stable positive energy quark. Repeating the calculation for
q0 → −m2, we obtain a singularity corresponding to the
unstable hole. Considering G−1

− (q0) instead of G−1
+ (q0), we

find the same singularities for an antiquark and an anti-
hole.

If the condition C2/C1 > 0 is not satisfied, the singu-
larities can move to the upper half plane. This does not
destroy the theory because they will be on the unphysical
sheet. However, in this case we do not have any simple
interpretations for these singularities.

The analytic properties of G−1
+ (q) presented in Fig. 9

imply that in the limit ε → 0 the Feynman Green function
defined for real q0 values becomes a non-analytic function.
Two analytic functions which have no singularities in the
upper and lower complex half planes can be defined and
are called the retarded and the advanced Green function.
At finite iε there exists one analytic function with four
cuts. This can be easily seen if we consider G−1

+ (q) as a
function of q0 at a fixed value of the space component ~q of
the 4-vector qµ. In this case we will have Fig. 10 instead of
Fig. 9. When negative energies are involved, it is natural
to expect that for the exact solution all four cuts have
discontinuities different from zero in the intervals from
q0 = |~q| to q0 → ∞ and from q0 → −∞ to q0 = −|~q|.

If in the usual, non-confined case we know the Green
function (calculating it by using Feynman diagrams in the

q0

−iε

iε

|~q | √
m2

1 + ~q 2

−|~q |

√
m2

2 + ~q 2−
√
m2

1 + ~q 2

−
√
m2

2 + ~q 2

Fig. 10.

Euclidean space), we can continue it into positive q2 values
and find that the discontinuity at q2 > m2 satisfies the
unitarity condition. This means that the retarded Green
function coincides with the Feynman Green function.

The confined case is more complicated. The knowledge
of the retarded Green function in the limit iε → 0 is not
sufficient for finding the Feynman Green function. In order
to obtain the Feynman Green function, we need the equa-
tion for the discontinuities on the new cuts; it will be an
equation for the density matrix of quarks in the vacuum.

In the next section we will find the solution of (2.1) in
the limit iε → 0 (retarded Green function) without poles
and with the properties we have discussed. In Sect. 4 we
will obtain the equations for the discontinuities on the new
and old cuts.

3 Solution for the retarded Green function
of confined massless quarks

In this section we follow the pattern formulated in the
previous section. We will find the solution of (2.1) in Eu-
clidean space and then, to be sure that it is stable, con-
tinue it into the complex plane. To find the confined so-
lution of (2.1) for the Green function of light quarks, we
will introduce the same representation for G−1 as in [6]:

G−1(q) =
(
u

q

)1/β

e−n̂φ/2, (3.1)

where β = 1 − g and n̂ = q̂/q. Instead of (84), (85) in [6],
we will have

φ̈+
2u̇
u
φ̇− 3 sinhφ = 0, (3.2a)

ü− u+

[
β2

(
3 sinh2 φ

2
+
φ̇2

4

)
− q2β cosh2 φ

2

f2

]
u

=
β̇

β
(u̇− u), (3.2b)

where ḟ = ∂f/∂ξ and ξ = ln q. As we see, the pion contri-
bution to (2.1) only influences the equation for u(ξ) and
it depends explicitly on q2. Because of this, for (3.2) the
energy is not conserved even if β is constant. In the Eu-
clidean region, q2 = −Q2 < 0, we can write φ = iψ and
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the equations take the form

ψ̈ + 2pψ̇ − 3 sinψ = 0, (3.3a)
ü− V (ξ)u = 0, (3.3b)

where

V (ξ) = 1 + β2

(
3 sin2 ψ

2
+
ψ̇2

4

)

−Q2

f2 β cos2
ψ

2
+
β̇

β
(p− 1) (3.4)

and p = u̇/u. As before, (3.3a) corresponds to particle
propagation in a periodic potential with damping when
ξ is increasing and with acceleration when ξ is decreas-
ing. In [6] we considered the trajectories of type I and II
(dashed curves); now we will mainly concentrate on the
trajectory C (solid curve) which has the structure we dis-
cussed in the previous section. Any given trajectory de-
fines the potential V (ξ) (if we neglect (β̇/β)(u̇ − u)) in
(3.3b), which is the Schrödinger equation at zero energy.
The solution of this equation, defining the damping p in
(3.3a), has to be chosen self-consistently.

The structure of (3.3) with pion contribution differs
essentially from the structure of the equations without
pions even at large Q2 in the sense that they have no
solutions corresponding to massive quarks. The massless
solutions of these equations are not very different with or
without π mesons.

The solutions of (3.3), satisfying the condition of
asymptotic freedom, are, at large Q2,

1
2
(ψ − π) =

ν3

Q2

(
α

α0

)−3γ

, (3.5a)

u = Q2u0

{(
α

α0

)γ

+
ν4
1

Q4

(
α

α0

)−γ

− ν6

8f2Q4

π

2

(
α

α0

)−2γ
}
, (3.5b)

where γ = 4/b is the invariant anomalous dimension;
b = (11/3)Nc−(2/3)nf . The renormalisation of the Green
function which we discussed in the previous section is

Z−1(Q) = u0

(
α

α0

)γ/β

at Q → ∞ (3.6)

in Feynman gauge (which we are using here).
It is not clear at all whether it makes sense to take

these anomalous dimensions seriously. For the sake of sim-
plicity, we will consider (3.5) at γ = 0. It is important that
the solutions of (3.3) still contain two parameters.

For small Q2 values the non-confined solutions can be
written in the simple form

ψ =
Q

mc
, (3.7a)

u = Q

{
1 +

1
8
β(0)

(
β(0)

Q2

m2
c

− Q2

f2

)}
. (3.7b)

The confined solution has a more complicated structure.
For Q2 → 0, ψ → π we have in this case

ψ − π

2
'
(
Q

m2

)p

C cos
(√

2 − 3β2 ln
Q

Q0

)
, (3.8a)

u '
(
m2

Q

)p

u0

{
1 −

(
Q

m2

)2p
β2C2

p
ln

Q

Q1

+
(
Q

m2

)2p
β2C2√
2 − 3β2

cos
(
2
√

2 − 3β2 ln
Q

Q0
+ δ
)}

, (3.8b)

with p = (1 + 3β2)1/2, β = β(0).
The solutions contain three essential parameters C, Q0

and Q1 which define ψ̃ = ψ − π, ˙̃
ψ and u̇ at Q = m2;

C = ψ̃0/2,

˙̃
ψ0

2
= p−

√
2 − 3β2 tan

(√
2 − 3β2 ln

m2

Q1

)
. (3.9)

Let us now consider the structure of the solution in the
intermediate region. We will start with a qualitative dis-
cussion of the non-confined solution of type I. In this case
the potential V0(ξ) in (3.3b) without pion contribution
behaves as shown in Fig. 12 (solid line) and the solution
u0(ξ) corresponds to the dashed curve in the same figure,
where λ is the QCD scale at which β2 = 2/3 and mc is
the quark mass.

The pion-induced potential

Vπ(ξ) = −Q2

f2 β cos2
ψ

2
(3.10)

decreases at large and small Q2 values:

Vπ = −Q2

f2 β(0) at Q2 < m2
c ,

Vπ = − ν6

f2Q4 at Q2 > λ2.

If f ∼ m ∼ ν < λ, as is natural to expect from the ex-
pression for Vπ, the total potential V becomes essentially
different from V0(ξ), especially for small β(0) values. It will
correspond roughly to the second solid curve in Fig. 12.
The solution u(ξ) of (3.3b) also changes substantially. Its
exact form depends, of course, on the values of f , ν and on
the behaviour of β(0). At sufficiently small β(0) it can even
have a shape u(ξ) corresponding to the second dashed line
in Fig. 12. From the point of view of the structure of the
solution in Euclidean space, these changes do not matter
too much (at least at first sight). However, as we will see,
from the point of view of the analytic continuation the
situation is different.

Let us now consider the behaviour of the potential
V (ξ) and the solution u(ξ) corresponding to the “con-
fined” trajectory C. In this case V0(ξ) and u0(ξ) behave
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as shown in Fig. 13. The pion potential Vπ(ξ) is in this
case

Vπ(ξ) =




− ν6

f2Q4 at Q > λ

−βQ2

f2

(
Q

m2

)2β
1
2

[
1

+ cos
(
2
√

2 − 3β2 ln Q
Q0

)]
at Q < m2.

(3.11)

This potential is strongly localised near the value Q=Q0
where the trajectory C reaches its highest point (point
ψ0 in Fig. 11). If this highest point is in the region close
to zero, the minimum of Vπ(ξ) equals −Q2

0β(Q0)/f2. As

a result, the potential V (ξ) has a behaviour as shown in
Fig. 13. The solution u(ξ) looks qualitatively the same. At
some point its derivative u̇(ξ) changes sign, which leads to
the transition from acceleration to damping in (3.3a). As a
result, the trajectory returns to the minimum of the well.
Obviously, there is always a solution for u(ξ) with such a
behaviour. Because of this, a solution of type C for ψ(ξ)
also exists and depends on two parameters ν1 and Q0. The
problem with this solution is not its existence in Euclidean
space but its behaviour at complex q2.

In order to understand the problem of the analytic
continuation, we have to remember that the singularity
of G−1 corresponds to the point where u(q) = 0, and we
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have to find out how the position of this zero depends on
the structure of u(ξ) at negative q2.

Let us start with the simple quasi-classical solution for
u:

u = u0 cosh ζ(ξ), ζ(ξ) =
∫ ξ

ξ0

√
V (ξ′)dξ′, (3.12)

where ξ0 is chosen such that u̇(ξ0) = 0, and let us consider
the analytic continuation of (3.12) along the circle in the
complex plane of q = Q0ei( π

2 −χ), χ ≥ 0; ξ0 = lnQ0 (see
Fig. 14). In this continuation we have

ζ(ξ) = −i
∫ χ

0

√
V

(
ξ0 +

iπ
2

− iχ′
)

dχ′ = ζ1 − iζ2,

u = cosh ζ1 cos ζ2 − i sinh ζ1 sin ζ2; (3.13)

u will have a zero at the point ζ2 = π/2, ζ1 = 0. The
condition ζ1 = 0 means that the singularity appears near
the circle where u̇(ξ0) = 0. The condition ζ2 = π/2 gives

ζ2 = χ
√
V (ξ0), χ =

π

2
√
V (ξ0)

. (3.14)

Hence, we will have a singularity in the upper half plane if
V (ξ0) > 1, and in the lower half plane, on the unphysical
sheet, if V (ξ0) < 1.

From (3.4) it is obvious that if the pion potential is
not present, then V (ξ) > 1, and there will be a singularity
on the physical sheet if the solution has a minimum (the
acceleration transforms into damping). However, with the
pion potential included, V (ξ0) can be less than unity, and
the singularity will be on the unphysical sheet if we choose
a solution with a minimum close to the minimum of the
potential. At the same time, considering the behaviour
of the solution for the non-confined trajectory (Fig. 12),
we see the opposite situation: without the pion potential,
u0(ξ) has no zeros and thus there is no reason for singu-
larities. However, if in the presence of the pion potential
at a small β(0) the solution u(ξ) shown in Fig. 12 exists
and has a minimum in the region where V (ξ) > 1, we
will definitely have a singularity in the upper half plane.
It is important to stress that for the non-confined trajec-
tory the position of the minimum is defined by the form

of the potential and by the condition according to which
the solution has to approach zero in the limit Q → 0.
This means that, at least for g(0) close to unity, the non-
confined solution will be unstable.

We will use this qualitative considerations as a hint
on how to constructively obtain the stable solution for
the confined trajectory. Let us consider the trajectory C
for which ψ0, defined as the point where u̇(ξ0) = 0, is
very small, ψ � 1, as is ψ1 where ψ̇ = 0. In this case
the potential V (ξ) in (3.3b) will be mainly determined by
the pion potential. In addition, it follows from (3.3a) that
ψ(ξ) will be a slowly changing function of ξ near ξ0 where
ψ̇ = 0 and u̇ = 0. In this region (3.3b) can be written as

ü− ν2u+ x2µ2u = 0, (3.15)

where ν2 = 1 + β2
(
3 sin2(ψ/2) + (ψ̇2/4)

)
, µ2 =

β−1 cos2(ψ/2) and x = (Q/f)β with slowly varying ν and
µ, ν2 ≈ 1 and µ2 ≈ β−1.

For constant µ and ν values, (3.15) is the Bessel equa-
tion in x ' ln ξ. Its solution can be given in the form

u = c1Yν(µx) + c2Jν(µx). (3.16)

We choose the coefficients c1, c2 in such a way that u̇(ξ0) =
0 at a point x0 = Q0f/β(x0) inside the region between Q1
and Q2 where ν is close to unity.

Outside this region u̇(ξ) 6= 0. Indeed, in the x → 0
limit only the singular Bessel function is important,

u = c1Yν(µx) ∼ (µx)−ν . (3.17)

For large x, as can be seen from (3.11), u also has a power
behaviour (3.17) (only with different µ(Q) and ν(Q)).

Thus we conclude that in the dangerous region where
u̇(ξ) can be zero we have an explicit expression for

u(ξ) = c1Y1(x) + c2J1(x), (3.18)

which allows us to carry out the analytic continuation
along the strip shown in Fig. 14 and to see where the
zeros of u(ξ) are.

The most interesting case is when the singularity ap-
pears near the real axis in the q plane: χ = π/2 + δ,

J1(e−i π
2 x′) = −iI1(x′),

Y1(e−i π
2 x′) = − 2

π
iK1(x′) − I1(x′).

(3.19)

The equation for the position of the singularity is

−i
[

2
π
K1(x′) − γI1(x′)

]
− I1(x′) = 0, γ = −c2

c1
=
Ẏ1(x0)
J̇1(x0)

.

(3.20)

It is clear from this equation that there is no singularity
on the real axis. Near the real axis, x′ = xe−iδ ≈ x− iδx,
we have

2
π
K1(x) − γI1(x) − İ1(x) · δ = 0,(

2
π
K̇1(x) − γİ1(x)

)
· δ + I1(x) = 0, ḟ = x∂xf(x).

(3.21)



100 V.N. Gribov: The theory of quark confinement

If x is not small, there is no reason to expect a singularity
near the real axis, since in this case the potential in (3.15)
is much less than unity. For small x values we have

2
π
K1(x) ' 2

πx

(
1 +

x2

2
ln
x

c

)
; I1(x) ' x

2
. (3.22)

The γ parameter for x0 � 1 becomes

γ ≡ Ẏ1(x0)
J̇1(x0)

=
4
πx2

0
� 1, (γ > 1 for x0 < 3). (3.23)

Using (3.22) it is easy to derive the solution of (3.21):

δ ' 1
2γ
, x2 ' 4

πγ
≈ x2

0. (3.24)

Hence, the singularity is on the unphysical sheet (δ > 0).
It is positioned on the dangerous circle x = x0 and near
the real axis when x0 is small.

Performing the analytic continuation we supposed that
ψ is changing slowly as a function of q. This hypothesis
is correct, if the singularity is far away from the real axis
(δ > 1). If, however, δ � 1, we have to be careful: near
the singularity the trajectory φ(ξ) changes fast, jumping
to a large value φ ∼ ln 1/δ.

Fortunately, this jump does not essentially influence
the behaviour of u(ξ) or the position of the singularity. At
first sight this jump is important because near the singu-
larity we have

u ∼
√
µ2 − q2 , φ̇ ∼ 1

µ2 − q2
, (3.25)

and in the equation for u the two terms ü and uφ̇2/4 are
of the same order. Let us, however, consider the equation
for z = u2. We can write this equation in the form

z̈ − 2
(

1 − 3β2 sinh2 φ

2
+

q2

2f2 β cosh2 φ

2

)
z

−1
2

(
ż2

z2 − β2φ̇2
)
z = 0. (3.26)

It is easy to show that the last term in this equation has
a finite limit E when q2 → µ2. Hence, the equation can
be rewritten as

z̈ − 2
(

1 − 3β2 sinh2 φ

2
+

q2

2f2 β cosh2 φ

2

)
z + E = 0.

(3.27)

Its solution near the singularity is

z = (q2 − µ2) + c(q2 − µ2)3−1/β ; eφ ∼ (µ2 − q2)−1/β

(3.28)

and the correction to z = u2 from the jump in the trajec-
tory turns out to be small if β > 1/2.

4 Analytic properties of the Green functions
of confined quarks

In the previous sections we have shown that the equations
for Green’s functions are not sufficient to define the theory.
It is easy to show that without confinement the require-
ment of usual analytic properties for the Green functions
is enough for defining the solution for the Green func-
tions. But even in this case it is not clear a priori, what
kind of bound states have to be introduced and how these
states would influence the equations for Green’s functions.
In particular, we have to see how Goldstone-type states,
which necessarily have to exist in some cases, will affect
the equations. This question will be discussed later. Hav-
ing it in mind, we first have to learn what kind of analytic
properties are necessary for the Green functions of quarks
and gluons if there is confinement.

Let us start with the usual definition (given by Dyson)
for the Green function of the quark:

GD(x− x′) = 〈TΨ(x)Ψ̄(x′)〉
= ϑ(x0 − x′

0)〈Ψ(x)Ψ̄(x′)〉
− ϑ(x′

0 − x0)〈Ψ̄(x′)Ψ(x)〉.
(4.1)

The quantity on the right-hand side can be written in the
form

〈Ψ(x)Ψ̄(x′)〉 =
∫

d4p

(2π)4
f(p)e−ip(x−x′), (4.2)

where

f(p) = γ0f
+(p)γ0 = f(p), (4.3)

f+(p) =
∑

n

〈0|Ψ(0)|n〉〈n|Ψ̄(0)|0〉δ(p− pn), (4.4)

and

〈Ψ̄(x′)Ψ(x)〉 =
∫

d4p

(2π)4
f̃(p)e−ip(x−x′); (4.5)

f̃(p) = f̃(p), (4.6)

f̃(p) =
∑

n

〈0|Ψ̄(0)|n〉〈n|Ψ(0)|0〉δ(p+ pn). (4.7)

Making use of charge conjugation, we can see that

f̃(p) = C−1f(−p)C. (4.8)

The usual hypothesis which leads to simple analytic prop-
erties for G(p) is

p2
n ≥ 0, pn0 > 0, (4.9)

for the energy–momentum of the intermediate states pn

in (4.2) and (4.5). If this were true the quarks would be
observable.
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If there are no stationary states with quark quantum
numbers, the functions f(p) and f̃(p) are still related by
(4.8) and they still satisfy (4.3) and (4.6) but no other
simple properties. It can only be said that the Dyson T -
product GD can be written in momentum space as the
sum of two analytic functions G1, G2:

GD = G1 −G2, (4.10a)

G1(p0, ~p) =
1
π

∫ ∞

−∞

dp′
0

p′
0 − p0 − iε

f(p′
0, ~p), (4.10b)

G2(p0, ~p) =
1
π

∫ ∞

−∞

dp′
0

p′
0 − p0 + iε

f̃(p′
0, ~p). (4.10c)

Nevertheless, we will see that the requirements of causality
and unitarity impose severe restrictions on the functions
f(p) and f̃(p).

Let us first look at the causality. In order to exploit it,
consider the retarded Green function

GR(x− x′) = ϑ(x0 − x′
0)
{
Ψ(x), Ψ(x′)

}
. (4.11)

In momentum space GR can be written in terms of the
same functions f(p) and f̃(p)

GR(p0, ~p) = G1(p0, ~p) +G∗
2(p0, ~p), (4.12)

where

G∗
2(p0, ~p) =

1
π

∫ ∞

−∞

dp′
0

p′
0 − p0 − iε

f̃(p′
0, ~p). (4.13)

The Green function (4.11) has to be zero for (x−x′)2 < 0.
This condition can be formulated in terms of f(p) and f̃(p)
as

f(p) = −f̃(p) at p2 < 0. (4.14)

The results (4.10) and (4.12)–(4.14) can be expressed in
terms of one analytic function in the complex plane with
cuts as shown in Fig. 15. The Dyson Green function is
defined for real p0 values and has an imaginary part dif-
ferent from zero everywhere. The retarded Green function
is defined in the upper half plane and, due to condition
(4.14), has no imaginary part between −|~p| and |~p|. This
means that GR can be defined in the complex plane with
four cuts (Fig. 16) provided iε is finite. In order to find

|~p| + iε−|~p| + iε

−|~p| − iε

p0

|~p| − iε

Fig. 16.

the analytic properties corresponding to Fig. 16, the cuts
denoted by the dashed lines have been moved from the re-
gion −|~p| < p0 < |~p| to the regions p0 > |~p| and p0 < −|~p|.
Of course this procedure defines a new function, different
from GD, on the real axis; it is natural to call it the Feyn-
man Green function GF. It is, we believe, possible to show
that this function corresponds to the Fourier component
of

GF(x, x′) = 〈TSΨ(x)Ψ̄(x′)〉, (4.15)

where S is the S-matrix in interaction representation; |〉,
〈| are free vacuum states. GF(x− x′) is usually calculated
as a series of Feynman diagrams. Generally speaking, (4.1)
is not equal to (4.15).

Independent of introducing GF, Fig. 16 suggests that
we can define two functions G+, G−. G+(p) is the contri-
bution of the usual cuts (|~p| − iε,∞), (−∞,−|~p| + iε):

G+(p) =
1
π

∫ ∞

|~p|−iε

dp′
0∆+(p0, ~p)
p′
0 − p0

− 1
π

∫ −|~p|+iε

−∞

dp′
0∆+(−p0, ~p)
p′
0 − p0

=
1
π

∫ ∞

0−iε

dp
′2

p′2 − p2∆+(p
′2),

(4.16)

and G−(p) is the contribution of the new cuts

G−(p) =
1
π

∫ ∞

0+iε

dp
′2

p′2 − p2∆−(p
′2). (4.17)

Expressions (4.16) and (4.17) have to be understood in
the usual way, as equations for two invariant functions.
The discontinuities ∆+ and ∆− are now complex but
∆+ + ∆− is real. The unitarity relations, which under
the usual (non-confined) circumstances define the discon-
tinuities on the normal cuts, must also define the new
discontinuities. To find them is equivalent to finding the
functions f(p) and f̃(p) which are the imaginary parts of
the Dyson Green function and the retarded Green func-
tion, respectively:

ImGD(p) = f(p) − f̃(p), (4.18a)

ImGR(p) = f(p) + f̃(p). (4.18b)
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5 Unitarity relations for quark
and gluon Green functions

Let us try to calculate 〈Ψ(x)Ψ̄(x′)〉 using the hypothesis
that the interaction can be introduced adiabatically in the
theory. This idea is not obvious at all. In the normal per-
turbative case it means that, starting with a free theory
and introducing the interaction adiabatically, we gradu-
ally reach the vacuum state corresponding to a theory
which includes interaction (curve a in Fig. 17). However,
if the spectrum of the theory with interaction differs dras-
tically from the spectrum of the free theory, this hypoth-
esis will not work because there has to be level crossing.
The curve which has a chance to reach the physical vac-
uum (curve b in Fig. 17) starts not at a vacuum state with
g = 0 but at an excited state. In our case the adiabatic
hypothesis is equivalent to the assumption that there ex-
ist some excited states in the free theory from which the
physical vacuum can be reached by introducing the inter-
action adiabatically.

In order to calculate 〈Ψ(x)Ψ̄(x′)〉, let us consider the
Dirac equation for the quark field Ψ(x):

(∂̂ − Â)Ψ −mΨ = 0; (5.1)

here Â is the operator of the potential for the colour field.
The operator Ψ can be written in terms of its initial con-
ditions at t → −∞ in the form

Ψ(x) =
∫

y0→−∞
d3y

[
∂0G

0
R(x− y)Ψ(y)

+G0
R(x− y)∂0Ψ(y)

]
+
∫

d4x′G0
R(x− x′)ÂΨ(x′),

(5.2)

where GR is the retarded Green function of the free Dirac
equation. Diagrammatically (5.2) can be expressed in the
form

x

GR

~y, y0

+

x

~y, y0

x′
A(x′)

+

x

~y, y0

x′
A(x′)

A(x′′)
x′′

+ · · · . (5.3)

Expressing A through its initial conditions we will have,
for example, the diagram

x

~y, y0

Ψ(x′)
x′ (5.4)

instead of the second diagram in (5.3); the dashed line
corresponds to the solution of the free equation for the
gluonic potential. Doing now the same for Ψ̄(x′) with the
advanced Green function, we obtain for Ψ(x)Ψ̄(x′) the fol-
lowing diagrammatic structure, where y0 = y′

0:

x

Ψ̄0(y′)

x′

Ψ0(y)

+

x

Ψ̄0(y′)

x′

Ψ0(y)

A

A

A

A

AA

+

x

A0(y′)

x′

A
A

A
A

Ψ

A0(y)

Ψ̄ + · · · . (5.5)

Let us denote

〈Ψ(x)Ψ̄(x′)〉 = ,

〈A(x)A(x′)〉 = .
(5.6)
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In order to calculate them, we have to take all possible
average values of AA and ΨΨ̄ . As a result, for 〈Ψ(x)Ψ̄(x′)〉
we will have the equation

x x′=

y′

x x′

y

+

y′

x x′

y

+

y′

x x′

y

+ · · · , (5.7)

and a similar graphic equation for 〈A(x)A(x′)〉. The func-
tions corresponding to the vertical lines are now exact
retarded Green functions

GR

=
G0

R

+
G0

R

+
D0

R

+ · · · . (5.8)

Let us see what happens to (5.7) when y0 = t → −∞. In
a theory without confinement the answer is very simple.
If the retarded Green function has a pole at p2 = m2, the
diagram

y′y

x x′

(5.9)

has a finite limit when y0 → −∞ and equals

∫
dq0e

−iq0

(
x0+x′

0
2 −y0

) ∫
eik(x−x′) d4k

(2π)2
δ(k2 −m2)

×δ((q − k)2 −m2)f(k), (5.10)

where f(k) corresponds to . The product of
the δ-functions gives

δ((q − k)2 −m2)δ(k2 −m2) = δ(k2 −m2)δ(q20 − 2k0q0)

→ δ(k2 −m2)
2k0

δ(q0), (5.11)

and therefore (5.10) does not depend on y0. For a free
Green function

x′x

= (5.12)

and instead of (5.7), we have the usual relation for the
imaginary part of the fermion Green function

f(p)
=

f0(p)
+

f(p)
+ · · · .

(5.13)

Repeating the same calculation in a theory in which the
Green functions of quarks and gluons have no poles but
soft singularities, we will get 〈Ψ(x)Ψ̄(x′)〉 = 0 in the t →
−∞ limit. This, of course, cannot be the correct answer –
in the theory with confinement there exist stable hadrons
in general, and those belonging to the pseudoscalar octet
in particular. The problem can be resolved by introducing
these pseudoscalar particles from the very beginning as
elementary objects [6]. In this case we include in the Dirac
equation for Ψ not only the colour field A but also the
pseudoscalar field ϕ. This will add to (5.7) diagrams of
the form

y′

x x′

y

+

y′y

x x′

, (5.14)

where the wavy lines correspond to pseudoscalar particles;
for the sake of simplicity, we will call them pions. They
satisfy the equality

y′y

x x′

=
x x′. (5.15)

Instead of (5.13), we have

f(p)
=

f(p′)

+
f(p′)

+ · · · (5.16)
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and for the gluonic imaginary part, correspondingly,

fg(p)
=

+ + · · · . (5.17)

Equation (5.16) differs essentially from (5.13). It contains
no driving term (like f0 in (5.13)); it is a non-linear but
homogeneous equation. Equation (5.17) contains driving
terms coming from fermions.

Let us consider (5.16) in detail in terms of (4.10) for
f(p). We can write f(p) in the form

f(p) = ϑ(p2){f+(p) + f−(p)} + ϑ(−p2)fEucl(p), (5.18)

where f± are the contributions of positive and negative
frequencies p0.

Let us first investigate the contributions of the func-
tions f+ and f− to the first term on the right-hand side
of (5.16). The function f+(p) gives the usual contribution
to the imaginary part of the quark Green function coming
from the intermediate (positive energy) π and quark (q+)
states. The contribution of f−(p) is very interesting be-
cause the signs of the particle energies in the intermediate
states are different (π and a negative energy quark q−).
The expression for this contribution (without the external
legs) is

∆q−,π = g2
∫

d4q

8π2 [q̂a−(q2) + b−(q2)]ϑ(−q0)
×δ((p− q)2 − µ2)ϑ(p0 − q0). (5.19)

Here g is the coupling constant connecting the π meson
to quarks; a− and b− are two invariant functions for the
imaginary part of the quark Green function.

In order to understand the structure of (5.19) let us
consider the integrals

I2(p, κ, µ) =
∫

d4q

8π2 δ(q
2 − κ2)δ((p− q)2 − µ2)

× ϑ(−q0)ϑ(p0 − q0)

=
1
4π

1
p2

√
[p2 − (κ+ µ)2][p2 − (κ− µ)2]

× ϑ(p2)ϑ((κ− µ)2 − p2){ϑ(−p0)ϑ(κ− µ)

+ ϑ(p0)ϑ(µ− κ)}
(5.20)

and

I1(p, κ, µ) =
∫

d4q

8π2 q̂δ(q
2 − κ2)δ((p− q)2 − µ2)

ϑ(−q0)ϑ(p0 − q0)

=
1
4π

p̂

p4 (p2 + κ2 − µ2)

×
√

[(κ− µ)2 − p2][(κ+ µ)2 − p2]

× ϑ(p2)ϑ((κ− µ)2 − p2)

× {ϑ(−p0)ϑ(κ− µ) + ϑ(p0)ϑ(µ− κ)} .

(5.21)

Hence,

∆q−,π = g2
∫

dκ2{a−(κ2)I1(p, κ, µ) + b−(κ2)I2(p, κ, µ)}.
(5.22)

The structure of I1 and I2 implies that f− on the right-
hand side gives contributions to both f− and f+ on the
left-hand side. The equations for f− and f+ can be written
in the following way:

f− = GR∆
−
q−,πḠR + . . . , (5.23)

f+ = GR∆
+
q−,πḠR +GR∆

+
q+,πḠR + · · · , (5.24)

where ∆−
q−,π(p) and ∆+

q−,π(p),

∆−
q−,π(p) = g2

∫ ∞
(

µ+
√

p2
)2

dκ2 [a−(κ2)I1(p, κ, µ)

+b−(κ2)I2(p, κ, µ)
]
+ . . . , (5.25)

∆+
q−,π(p) = g2ϑ(µ−

√
p2)

×
∫ (

µ−
√

p2
)2

0
dκ2 [a−(κ2)I1(p, κ, µ)

+b−(κ2)I2(p, κ, µ)
]
+ . . . , (5.26)

are the contributions corresponding to the quark masses
κ larger (κ > µ) and smaller (κ < µ) than the π meson
mass µ, respectively. Higher-order terms have the same
structure: large quark masses of f− contribute to f−, small
quark masses contribute to f+.

The result of this analysis is the following. The imag-
inary part of f−(p2) which equals zero in a non-confined
theory has to satisfy a non-linear homogeneous equation.
Due to asymptotic freedom, it must decrease at large p2.
In a linear approximation the equation for f− with zero
boundary conditions at infinity is a typical bound state
equation defining the quark distribution in the vacuum.

The equation for f+ is very different. The solution of
the equation for f− gives an inhomogeneous term for the
equation for f+. The latter becomes similar to the equa-
tion for f+ in a non-confined theory (5.13). Now, instead
of the usual f0(p) = δ(p2 −m2)(p̂+m), we have

f0(p) = GR∆
+
q−,π(p)ḠR. (5.27)
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Note that, according to (5.26), f0(p) is proportional to
ϑ(µ −

√
p2). Iterating, we have to find f+ which corre-

sponds to perturbation theory at large p2.
The equations for f+ and f− contain GR. If we were

able to find f+, f− for a given GR, we would then obtain
an equation for GR in the form of the dispersion relation

GR(p) =
1
π

∫
dp′

0

p′
0 − p0

f(p′
0, p) − 1

π

∫
dp′

0

p′
0 − p0

f̃(p′
0, p).

(5.28)

This GR(p) has no poles since there are no δ-functions in
f+ and f−. Equations (5.16), (5.17) can be considered as
generalised unitarity relations.

The structure of the equations for gluonic fg+, fg− is
different only in the sense that fg− contains an inhomo-
geneous term corresponding to intermediate quark states.

All these equations are in excellent agreement with
the idea that, when the negative energy states are not
completely occupied, both positive and negative energy
states become unstable. The decay modes of these states
are explicitly written in (5.16), (5.17).

Up to now we ignored the contribution fEucl(p)ϑ(−p2).
Let us include it in the right-hand sides of (5.16), (5.17).
The equation for f− will remain the same homogeneous
equation (since it is impossible to have a time-like vector p
with a negative p0 as a sum of a space-like quark momen-
tum p′ and a time-like pion momentum k with a positive
k0). The equation for f+ (5.24) will acquire an additional
term:

f+ = GR∆
+
q−,πḠR +GR∆

+
q+,πḠR +GR∆

+
qEucl,π

ḠR.

(5.29)

The equation for fEucl can be written in the form

fEucl(p) = GR∆
Eucl
q−,πḠR +GR∆

Eucl
q+,πḠR, (5.30)

containing a driving term. The iterative solution of (5.30)
has the following diagrammatic structure:

fEucl(p)
=

π

f−

+

f−
+ . . . . (5.31)

By inserting this solution into the last term of (5.29) we
will arrive at an equation similar to (5.24) with the only
difference that ∆+

q−,π in (5.24) acquires an additional con-
tribution from multi-pion states. This will not change any
of the conclusions we have reached, because it are only f+
and f− which matter for the calculation of the retarded
Green function.

The structure of fEucl written in (5.31) is, nevertheless,
interesting in two respects. Firstly, it shows how the ana-
lytic features corresponding to Fig. 15 (with functions hav-
ing discontinuities at positive and negative p2 values) can
be reduced to analytic features corresponding to Fig. 16,
where the discontinuity differs from zero only at positive
p2 values. Secondly, the existence of the integrals in (5.31)
imposes a restriction on f−(p).
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